论文标题
DROIDETEC:通过深度学习,Android恶意软件检测和恶意代码本地化
Droidetec: Android Malware Detection and Malicious Code Localization through Deep Learning
论文作者
论文摘要
Android恶意软件检测是建立安全可信系统的关键一步。特别是,手动搜索潜在的恶意代码已经困扰了计划分析师很长时间了。在本文中,我们提出了一种基于Android恶意软件检测和恶意代码本地化的基于深度学习的方法,以将应用程序程序作为自然语言序列建模。 Droidetec采用一种新型的特征提取方法来从Android应用中得出行为序列。基于此,将双向长期内存网络用于恶意软件检测。提取行为序列中的每个单元均以创造性表示为矢量,该矢量允许DroidEtece自动分析序列段的语义,并最终发现恶意代码。使用9616个恶意和11982良性计划的实验表明,DroidEtec的准确性为97.22%,F1分数为98.21%。总体而言,DroidEtec的命中率为91%,可以正确查找恶意代码段。
Android malware detection is a critical step towards building a security credible system. Especially, manual search for the potential malicious code has plagued program analysts for a long time. In this paper, we propose Droidetec, a deep learning based method for android malware detection and malicious code localization, to model an application program as a natural language sequence. Droidetec adopts a novel feature extraction method to derive behavior sequences from Android applications. Based on that, the bi-directional Long Short Term Memory network is utilized for malware detection. Each unit in the extracted behavior sequence is inventively represented as a vector, which allows Droidetec to automatically analyze the semantics of sequence segments and eventually find out the malicious code. Experiments with 9616 malicious and 11982 benign programs show that Droidetec reaches an accuracy of 97.22% and an F1-score of 98.21%. In all, Droidetec has a hit rate of 91% to properly find out malicious code segments.