论文标题

自动化应用程序评论响应生成

Automating App Review Response Generation

论文作者

Gao, Cuiyun, Zeng, Jichuan, Xia, Xin, Lo, David, Lyu, Michael R., King, Irwin

论文摘要

先前的研究表明,回复用户评论通常会对用户对应用程序给出的评分产生积极影响。例如,Hassan等人。发现对审查做出回应会增加用户更新其评级的机会,而不是不响应。为了减轻对大部分用户评论的回复,开发人员通常采用基于模板的策略,模板可以对使用该应用程序表示赞赏或提及公司电子邮件地址以供用户进行跟进。但是,对于开发人员来说,每天阅读大量的用户评论并不是一件容易的事。因此,需要更多的自动化来帮助开发人员响应用户评论。 在满足上述需求时,在这项工作中,我们提出了一种新颖的方法RRGEN,该方法通过学习评论及其回答之间的知识关系自动产生回答。 RRGEN明确合并了评论属性,例如用户评分和审查长度,并以可用的培训数据的监督方式学习了评论与相应回复之间的关系。在58个应用程序和309,246个评论响应对的实验突出显示了RRGEN在BLEU-4方面的表现至少超过67.4%(这是一种准确的措施,用于评估对话响应生成系统)。定性分析还证实了RRGEN在产生相关和准确响应方面的有效性。

Previous studies showed that replying to a user review usually has a positive effect on the rating that is given by the user to the app. For example, Hassan et al. found that responding to a review increases the chances of a user updating their given rating by up to six times compared to not responding. To alleviate the labor burden in replying to the bulk of user reviews, developers usually adopt a template-based strategy where the templates can express appreciation for using the app or mention the company email address for users to follow up. However, reading a large number of user reviews every day is not an easy task for developers. Thus, there is a need for more automation to help developers respond to user reviews. Addressing the aforementioned need, in this work we propose a novel approach RRGen that automatically generates review responses by learning knowledge relations between reviews and their responses. RRGen explicitly incorporates review attributes, such as user rating and review length, and learns the relations between reviews and corresponding responses in a supervised way from the available training data. Experiments on 58 apps and 309,246 review-response pairs highlight that RRGen outperforms the baselines by at least 67.4% in terms of BLEU-4 (an accuracy measure that is widely used to evaluate dialogue response generation systems). Qualitative analysis also confirms the effectiveness of RRGen in generating relevant and accurate responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源