论文标题

可扩展的量表量化功能回归,用于密集采样的功能数据

Scalable Function-on-Scalar Quantile Regression for Densely Sampled Functional Data

论文作者

Liu, Yusha, Li, Meng, Morris, Jeffrey S.

论文摘要

功能分位数回归(FQR)是功能数据的平均回归的有用替代方法,因为它对标量预测指标如何影响功能响应的条件分布提供了全面的理解。在本文中,我们研究了未依赖参数误差或独立随机过程假设的密集采样,高维功能数据的FQR模型,并重点介绍了在这种有挑战性的制度下的统计推断以及可扩展的实施。这是通过一种简单但功能强大的分布式策略来实现的,在该策略中,我们首先在每个采样位置执行单独的分位数回归来计算$ m $估计器,然后通过正确利用$ M $估计器的不确定性量化和依赖性结构来对整个系数函数进行估计和推断。我们得出了均匀的巴哈杜尔表示形式,并在离散采样网格上为$ m $估计器提供了强烈的高斯近似结果,从而导致降低尺寸并作为推理的基础。提出了具有最小值最佳性的基于插值的估计器,并建立了点和同时间隔估计器的较大样本属性。在FQR模型下获得的最小值最佳速率显示出一种有趣的相变现象,该现象先前在功能平均回归中已经观察到。提出的方法通过模拟和质谱蛋白质组学数据集的应用说明。

Functional quantile regression (FQR) is a useful alternative to mean regression for functional data as it provides a comprehensive understanding of how scalar predictors influence the conditional distribution of functional responses. In this article, we study the FQR model for densely sampled, high-dimensional functional data without relying on parametric error or independent stochastic process assumptions, with the focus on statistical inference under this challenging regime along with scalable implementation. This is achieved by a simple but powerful distributed strategy, in which we first perform separate quantile regression to compute $M$-estimators at each sampling location, and then carry out estimation and inference for the entire coefficient functions by properly exploiting the uncertainty quantification and dependence structure of $M$-estimators. We derive a uniform Bahadur representation and a strong Gaussian approximation result for the $M$-estimators on the discrete sampling grid, leading to dimension reduction and serving as the basis for inference. An interpolation-based estimator with minimax optimality is proposed, and large sample properties for point and simultaneous interval estimators are established. The obtained minimax optimal rate under the FQR model shows an interesting phase transition phenomenon that has been previously observed in functional mean regression. The proposed methods are illustrated via simulations and an application to a mass spectrometry proteomics dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源