论文标题

动态推断:一种有效的视频动作识别的新方法

Dynamic Inference: A New Approach Toward Efficient Video Action Recognition

论文作者

Wu, Wenhao, He, Dongliang, Tan, Xiao, Chen, Shifeng, Yang, Yi, Wen, Shilei

论文摘要

尽管视频中的行动识别最近取得了巨大的成功,但由于巨大的计算成本,这仍然是一项具有挑战性的任务。设计轻型网络是可能的解决方案,但可能会降低识别性能。在本文中,我们通过利用不同视频的区分性差异来创新提出一种一般的动态推理思想,以提高推理效率。动态推理方法可以从网络深度的各个方面以及输入视频帧的数量,甚至以联合输入和网络深度方式来实现。简而言之,我们将计算图的输入帧和网络深度视为二维网格,并通过预测模块​​提前将几个检查点放在该网格上。通过遵循一些预定义的途径,每当推理过程遇到检查站时,就可以在网格上逐步进行推理,就可以根据早期停止标准达到的早期预测。出于概念验证的目的,我们使用两个众所周知的骨干CNN实例化了三个动态推理框架。在这些情况下,我们克服了有限的时间覆盖范围的缺点,这是由于新型框架置换方案的早期预测导致的,并通过引入在线时间移动模块引入渐进计算与视频时间关系建模之间的冲突。进行了广泛的实验,以彻底分析我们思想的有效性并激发未来的研究工作。各种数据集的结果也明显了我们方法的优势。

Though action recognition in videos has achieved great success recently, it remains a challenging task due to the massive computational cost. Designing lightweight networks is a possible solution, but it may degrade the recognition performance. In this paper, we innovatively propose a general dynamic inference idea to improve inference efficiency by leveraging the variation in the distinguishability of different videos. The dynamic inference approach can be achieved from aspects of the network depth and the number of input video frames, or even in a joint input-wise and network depth-wise manner. In a nutshell, we treat input frames and network depth of the computational graph as a 2-dimensional grid, and several checkpoints are placed on this grid in advance with a prediction module. The inference is carried out progressively on the grid by following some predefined route, whenever the inference process comes across a checkpoint, an early prediction can be made depending on whether the early stop criteria meets. For the proof-of-concept purpose, we instantiate three dynamic inference frameworks using two well-known backbone CNNs. In these instances, we overcome the drawback of limited temporal coverage resulted from an early prediction by a novel frame permutation scheme, and alleviate the conflict between progressive computation and video temporal relation modeling by introducing an online temporal shift module. Extensive experiments are conducted to thoroughly analyze the effectiveness of our ideas and to inspire future research efforts. Results on various datasets also evident the superiority of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源