论文标题

使用混合层次分类从SMS中提取的设备信息

On-Device Information Extraction from SMS using Hybrid Hierarchical Classification

论文作者

Vatsal, Shubham, Purre, Naresh, Moharana, Sukumar, Ramena, Gopi, Mohanty, Debi Prasanna

论文摘要

SMS收件箱的混乱是当今用户在数字世界中面临的严重问题之一,在该世界中,每个在线登录,交易以及促销都会产生多个SMS。这个问题不仅可以防止用户有效地搜索和导航消息,而且通常会导致用户错过与相应的SMS相关的相关信息,例如提供代码,付款提醒等。在本文中,我们提出了一个独特的体系结构来组织和从SMS中提取适当的信息,并在直觉模板中进一步显示它。在拟议的体系结构中,我们使用混合分层长期记忆(LSTM) - 跨性神经网络(CNN)将SM分类为多个类,然后是一组用于从分类消息中提取相关信息的实体解析器。使用其预处理技术的体系结构不仅考虑了在SMS数据中观察到的巨大变化,而且还使其在推理时序和大小方面对其在设备(手机)功能方面有效。

Cluttering of SMS inbox is one of the serious problems that users today face in the digital world where every online login, transaction, along with promotions generate multiple SMS. This problem not only prevents users from searching and navigating messages efficiently but often results in users missing out the relevant information associated with the corresponding SMS like offer codes, payment reminders etc. In this paper, we propose a unique architecture to organize and extract the appropriate information from SMS and further display it in an intuitive template. In the proposed architecture, we use a Hybrid Hierarchical Long Short Term Memory (LSTM)-Convolutional Neural Network (CNN) to categorize SMS into multiple classes followed by a set of entity parsers used to extract the relevant information from the classified message. The architecture using its preprocessing techniques not only takes into account the enormous variations observed in SMS data but also makes it efficient for its on-device (mobile phone) functionalities in terms of inference timing and size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源