论文标题
比例桥接材料物理:积极的学习工作流程和合金中自由能量功能表示的可集成的深神经网络
Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys
论文作者
论文摘要
自由能在连续物理学中许多系统的描述中起着基本作用。值得注意的是,在多物理应用中,它编码不同场之间的热力学耦合。因此,它引起了组成现象之间相互作用动力学的驱动力。在机械化学相互作用的材料系统中,即使仅考虑组成,订单参数和菌株也可以使自由能具有相当高的二维。在提出自由能作为规模桥接的范式时,我们以前已经利用了神经网络来代表这种高维函数。具体而言,我们已经开发了一个可集成的深神经网络(IDNN),可以训练从原子量表模型和统计力学获得的自由能量衍生数据,然后进行分析集成以恢复自由能密度函数。动机来自统计力学形式主义,其中某些自由能导数可用于控制系统,而不是自由能本身。我们当前的工作将IDNN与主动学习工作流相结合,以改善高维输入空间中自由能衍生数据的采样。被视为投入输出图,机器学习可以随着数学描述随规模桥接而变化,可以适应独立数量和依赖数量之间的角色逆转。作为一个原型系统,我们专注于Ni-Al。使用由此产生的IDNN表示Ni-AL的自由能密度的相位场模拟表明,已经学习了材料的适当物理。据我们所知,这代表了使用用于实际材料系统的自由能的规模桥接的最完整处理,该方法从电子结构计算开始,并通过统计力学进行连续物理学进行。
The free energy plays a fundamental role in descriptions of many systems in continuum physics. Notably, in multiphysics applications, it encodes thermodynamic coupling between different fields. It thereby gives rise to driving forces on the dynamics of interaction between the constituent phenomena. In mechano-chemically interacting materials systems, even consideration of only compositions, order parameters and strains can render the free energy to be reasonably high-dimensional. In proposing the free energy as a paradigm for scale bridging, we have previously exploited neural networks for their representation of such high-dimensional functions. Specifically, we have developed an integrable deep neural network (IDNN) that can be trained to free energy derivative data obtained from atomic scale models and statistical mechanics, then analytically integrated to recover a free energy density function. The motivation comes from the statistical mechanics formalism, in which certain free energy derivatives are accessible for control of the system, rather than the free energy itself. Our current work combines the IDNN with an active learning workflow to improve sampling of the free energy derivative data in a high-dimensional input space. Treated as input-output maps, machine learning accommodates role reversals between independent and dependent quantities as the mathematical descriptions change with scale bridging. As a prototypical system we focus on Ni-Al. Phase field simulations using the resulting IDNN representation for the free energy density of Ni-Al demonstrate that the appropriate physics of the material have been learned. To the best of our knowledge, this represents the most complete treatment of scale bridging, using the free energy for a practical materials system, that starts with electronic structure calculations and proceeds through statistical mechanics to continuum physics.