论文标题

预防性阅读障碍的预防性评估的序数回归方法

A Neural Approach to Ordinal Regression for the Preventive Assessment of Developmental Dyslexia

论文作者

Martinez-Murcia, F. J., Ortiz, A., Formoso, Marco A., Lopez-Zamora, M., Luque, J. L., Giménez, A.

论文摘要

发展性阅读障碍(DD)是一种学习障碍,与影响大约5%人群的阅读技能有关。 DD可能会对受影响儿童的智力和个人发展产生巨大影响,因此,早期发现是实施教学语言预防策略的关键。研究表明,可能存在影响音素处理的生物学基础,因此在获得阅读能力之前,这些症状可能是可识别的,从而可以早期干预。在本文中,我们提出了一种新方法,以评估学生在学习阅读之前的DD风险。为此,我们提出了一种混合神经模型,该模型可以从5岁时完成的测试中计算出阅读障碍的风险水平。我们的方法首先训练自动编码器,然后将训练有素的编码器与设计的优化序数回归神经网络相结合,以确保预测的一致性。我们的实验表明,该系统能够检测到未受影响的受试者两年后,它主要基于语音处理评估DD的风险,其特异性为0.969,正确率超过0.92。此外,训练有素的编码器可用于将测试结果转换为可解释的主题空间分布,以促进风险评估并验证方法。

Developmental Dyslexia (DD) is a learning disability related to the acquisition of reading skills that affects about 5% of the population. DD can have an enormous impact on the intellectual and personal development of affected children, so early detection is key to implementing preventive strategies for teaching language. Research has shown that there may be biological underpinnings to DD that affect phoneme processing, and hence these symptoms may be identifiable before reading ability is acquired, allowing for early intervention. In this paper we propose a new methodology to assess the risk of DD before students learn to read. For this purpose, we propose a mixed neural model that calculates risk levels of dyslexia from tests that can be completed at the age of 5 years. Our method first trains an auto-encoder, and then combines the trained encoder with an optimized ordinal regression neural network devised to ensure consistency of predictions. Our experiments show that the system is able to detect unaffected subjects two years before it can assess the risk of DD based mainly on phonological processing, giving a specificity of 0.969 and a correct rate of more than 0.92. In addition, the trained encoder can be used to transform test results into an interpretable subject spatial distribution that facilitates risk assessment and validates methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源