论文标题

凝视保存眼镜清除和持续凝视估算的自行车

Gaze Preserving CycleGANs for Eyeglass Removal & Persistent Gaze Estimation

论文作者

Rangesh, Akshay, Zhang, Bowen, Trivedi, Mohan M.

论文摘要

驾驶员的目光对于确定他们的注意力,状态,情境意识和准备接管部分自动化车辆的愿望至关重要。估计凝视方向是在理想条件下使用非侵入性成像传感器在理想条件下衡量驾驶员状态的最明显方法。不幸的是,车辆环境引入了各种挑战,这些挑战通常是无所作为的 - 刺耳的照明,夜间条件和反射眼镜。在这种情况下,单独依靠头部姿势可能是不可靠和错误的。在这项研究中,我们提供了解决现实世界中遇到的这些问题的解决方案。为了解决照明问题,我们证明使用具有适当均衡和归一化的红外摄像头足够。为了处理眼镜及其相应的人工制品,我们在凝视估计之前,使用生成对抗网络采用图像到图像翻译来预处理图像。我们提出的凝视保存自行车(GPCyclegan)经过训练,可以保留驾驶员的目光,同时从面部图像中去除潜在的眼镜。 GPCyclegan基于众所周知的Cyclegan方法 - 添加了凝视分类器和凝视一致性损失,以进行其他监督。我们的方法在具有挑战性的现实数据集方面表现出改善的性能,可解释性,鲁棒性和优越的定性结果。

A driver's gaze is critical for determining their attention, state, situational awareness, and readiness to take over control from partially automated vehicles. Estimating the gaze direction is the most obvious way to gauge a driver's state under ideal conditions when limited to using non-intrusive imaging sensors. Unfortunately, the vehicular environment introduces a variety of challenges that are usually unaccounted for - harsh illumination, nighttime conditions, and reflective eyeglasses. Relying on head pose alone under such conditions can prove to be unreliable and erroneous. In this study, we offer solutions to address these problems encountered in the real world. To solve issues with lighting, we demonstrate that using an infrared camera with suitable equalization and normalization suffices. To handle eyeglasses and their corresponding artifacts, we adopt image-to-image translation using generative adversarial networks to pre-process images prior to gaze estimation. Our proposed Gaze Preserving CycleGAN (GPCycleGAN) is trained to preserve the driver's gaze while removing potential eyeglasses from face images. GPCycleGAN is based on the well-known CycleGAN approach - with the addition of a gaze classifier and a gaze consistency loss for additional supervision. Our approach exhibits improved performance, interpretability, robustness and superior qualitative results on challenging real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源