论文标题

具有非负重的有限度图同态同态的二分法

A dichotomy for bounded degree graph homomorphisms with nonnegative weights

论文作者

Govorov, Artem, Cai, Jin-Yi, Dyer, Martin

论文摘要

我们考虑计算由对称矩阵$ a $定义的加权图同构的复杂性。每个对称矩阵$ a $定义图形同构函数$ z_a(\ cdot)$,也称为分区函数。 Dyer and Greenhill [10]建立了对称$ \ {0,1 \} $ - 矩阵$ a $的复杂性二分法(\ cdot)$,他们进一步证明了其#p-hardness零件也适用于有限度图。 Bulatov和Grohe [4]将Dyer-Greenhill二分法扩展到非负对称矩阵$ a $。但是,它们的硬度证明需要任意大小的图表,并且可以扩展染料绿色二分法的有限程度部分是否可以扩展为15年。我们解决了这个空旷的问题,并证明对于非负对称$ a $,$ z_a(g)$都是在所有图表$ g $的多项式时间内,或者是有限度(和简单)图$ g $的#p-hard。我们进一步扩展了复杂性二分法,以包括非负顶点重量。此外,我们证明了Goldberg等人的二分法的#p-毛线部分。 [12]对于$ z_a(\ cdot)$也适用于简单图形,其中$ a $是任何真正的对称矩阵。

We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix $A$. Each symmetric matrix $A$ defines a graph homomorphism function $Z_A(\cdot)$, also known as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of $Z_A(\cdot)$ for symmetric $\{0, 1\}$-matrices $A$, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices $A$. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric $A$, either $Z_A(G)$ is in polynomial time for all graphs $G$, or it is #P-hard for bounded degree (and simple) graphs $G$. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [12] for $Z_A(\cdot)$ also holds for simple graphs, where $A$ is any real symmetric matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源