论文标题

洋子不变的上限猜想

An upper bound conjecture for the Yokota invariant

论文作者

Belletti, Giulio

论文摘要

我们猜想了Yokota不变的多面体图的上限,从而扩大了$ 6J $ -Symbol的增长的先前结果。使用Barrett的傅立叶变换,我们能够在大型示例中证明这一猜想。由于这一结果,我们证明了新无限的双曲歧管系列的Turaev-Viro量猜想。

We conjecture an upper bound on the growth of the Yokota invariant of polyhedral graphs, extending a previous result on the growth of the $6j$-symbol. Using Barrett's Fourier transform we are able to prove this conjecture in a large family of examples. As a consequence of this result, we prove the Turaev-Viro Volume Conjecture for a new infinite family of hyperbolic manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源