论文标题
街道地址和街道图像的树木地理编码
Geocoding of trees from street addresses and street-level images
论文作者
论文摘要
我们介绍了一种使用街道级全景图像和树木实例匹配的全局优化框架更新旧树库的方法。库存中的树木的地理位置直到2000年代初使用街道地址记录,而新的库存则使用GPS。我们的方法与地理坐标进行了较旧的清单,以允许将它们与较新的清单联系起来,以促进有关树木死亡率的长期研究。使这个问题挑战的是,每个街道地址的树木数量不同,图像中不同树木实例的异质外观,如果从多个图像和遮挡中观察到了模棱两可的树位置。为了解决这个分配问题,我们(i)使用深度学习检测到Google街道视图全景图中的树木,(ii)将每棵树的多视图检测结合到单个表示中,(iii),(iii)和每个街道地址给定的树木与给定的树木匹配的树,并使用全球优化方法。美国加利福尼亚州5个城市> 50000棵树木的实验表明,我们能够将地理坐标分配给街道38%的街道,这是长期研究大规模街头生态系统服务价值的好起点。
We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s where recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for > 50000 trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38 % of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale.