论文标题
拓扑和一维的近距离heisenberg模型
Topology and the one-dimensional Kondo-Heisenberg model
论文作者
论文摘要
Kondo-Heinsberg链是一个非常相关的系统的有趣模型,该模型具有带有配对密度波(PDW)顺序的广泛超导状态。我们中的一些人最近提出,这种PDW状态是一种受对称性保护的拓扑(SPT)状态,模型的间隙旋转部门支持Majorana零模式。在这项工作中,我们使用数字和分析方法的组合重新检查了此问题。在广泛的密度矩阵重新归一化组计算中,我们没有发现该模型的PDW阶段中拓扑基态退化或先前提出的Majora零模式的证据。这一结果促使我们重新审查Majorana零模式存在的原始论点。对该模型的有效连续域理论的仔细分析表明,该理论的旋转部门的希尔伯特空间不包含任何单一的主要效率激发。该分析表明,掺杂的1D Kondo-Heisenberg模型的PDW状态不是Majorana零模式的SPT。
The Kondo-Heinsberg chain is an interesting model of a strongly correlated system which has a broad superconducting state with pair-density wave (PDW) order. Some of us have recently proposed that this PDW state is a symmetry-protected topological (SPT) state, and the gapped spin sector of the model supports Majorana zero modes. In this work, we reexamine this problem using a combination of numeric and analytic methods. In extensive density matrix renormalization group calculations, we find no evidence of a topological ground state degeneracy or the previously proposed Majorana zero modes in the PDW phase of this model. This result motivated us to reexamine the original arguments for the existence of the Majorana zero modes. A careful analysis of the effective continuum field theory of the model shows that the Hilbert space of the spin sector of the theory does not contain any single Majorana fermion excitations. This analysis shows that the PDW state of the doped 1D Kondo-Heisenberg model is not an SPT with Majorana zero modes.