论文标题

概率度量空间和间距离距离的软随机图

Soft Random Graphs in Probabilistic Metric Spaces & Inter-graph Distance

论文作者

Wang, Kangrui, Chakrabarty, Dalia

论文摘要

我们提出了一种在概率度量空间中绘制的软性随机几何图(SRGG)的新方法,其图的连接函数定义为边缘随机变量的边缘后验概率,鉴于由该边缘连接的节点之间的相关性。实际上,此节点间相关矩阵本身是我们学习策略中的一个随机变量,我们通过将每个节点识别为一个随机变量来学习这一点,该变量的测量值包括给定的多元数据集的列。我们使用2块更新方案对大都市进行推断。 SRGG被证明是由非均匀泊松点过程产生的,其强度取决于位置。鉴于多元数据集,在所有行间相关矩阵上实现了封闭形式的边缘化后,可以实现柱间相关矩阵的可能性。鉴于各个数据集,学到的一对图形模型之间的距离提供了给定数据集之间的绝对相关性。这种间距离距离计算是我们的最终目标,并且使用新引入的度量标准实现,该指标类似于两个学识渊博的SRGG的后验概率之间的不确定性均衡的地狱距离,鉴于相应的数据集。进行了两组关于真实数据的经验例证,并包括对模拟数据的应用,以说明将测量噪声纳入图形模型的效果。

We present a new method for learning Soft Random Geometric Graphs (SRGGs), drawn in probabilistic metric spaces, with the connection function of the graph defined as the marginal posterior probability of an edge random variable, given the correlation between the nodes connected by that edge. In fact, this inter-node correlation matrix is itself a random variable in our learning strategy, and we learn this by identifying each node as a random variable, measurements of which comprise a column of a given multivariate dataset. We undertake inference with Metropolis with a 2-block update scheme. The SRGG is shown to be generated by a non-homogeneous Poisson point process, the intensity of which is location-dependent. Given the multivariate dataset, likelihood of the inter-column correlation matrix is attained following achievement of a closed-form marginalisation over all inter-row correlation matrices. Distance between a pair of graphical models learnt given the respective datasets, offers the absolute correlation between the given datasets; such inter-graph distance computation is our ultimate objective, and is achieved using a newly introduced metric that resembles an uncertainty-normalised Hellinger distance between posterior probabilities of the two learnt SRGGs, given the respective datasets. Two sets of empirical illustrations on real data are undertaken, and application to simulated data is included to exemplify the effect of incorporating measurement noise in the learning of a graphical model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源