论文标题

不同的矢量问题的双重指数下限

A Double Exponential Lower Bound for the Distinct Vectors Problem

论文作者

Pilipczuk, Marcin, Sorge, Manuel

论文摘要

在(二进制)不同的矢量问题中,我们给了一个二进制矩阵A,具有成对的行不同行,并希望在最多k列中选择,以便将矩阵限制为这些列,所有行仍然是成对的。 Froese等人的结果。 [JCSS]暗示A 2^2^(o(k)) * poly(| a |) - 时间的蛮力算法,用于不同的矢量。我们表明,通过证明存在常数C,使算法求解不同的向量的存在与运行时间2^(O(2^(ck))) * Poly(| a |)的存在与指数时间假设相矛盾。

In the (binary) Distinct Vectors problem we are given a binary matrix A with pairwise different rows and want to select at most k columns such that, restricting the matrix to these columns, all rows are still pairwise different. A result by Froese et al. [JCSS] implies a 2^2^(O(k)) * poly(|A|)-time brute-force algorithm for Distinct Vectors. We show that this running time bound is essentially optimal by showing that there is a constant c such that the existence of an algorithm solving Distinct Vectors with running time 2^(O(2^(ck))) * poly(|A|) would contradict the Exponential Time Hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源