论文标题

图像合成和完成

Pixel-wise Conditioned Generative Adversarial Networks for Image Synthesis and Completion

论文作者

Ruffino, Cyprien, Hérault, Romain, Laloy, Eric, Gasso, Gilles

论文摘要

事实证明,生成的对抗网络(GAN)成功地生成了无监督的图像。几项作品已经扩展了甘施,以通过将一部分的一部分重建来调节生成,从而扩展了涂料的图像。尽管它们取得了成功,但这些方法在设置中只有一小部分图像像素才有局限性。在本文中,我们研究了很少的像素值时,调节剂量的有效性。我们提出了一个建模框架,该框架导致在GAN目标函数中增加一个明确的成本术语,以实施像素的条件。我们研究了该正则化术语对生成图像质量的影响以及给定像素约束的实现。使用最近的Pacgan技术,我们确保我们在生成的样品中保持多样性。对FashionMnist进行的实验表明,正则化项有效地控制了生成的图像质量和调节之间的权衡。对CIFAR-10和CELEBA数据集的实验评估证明了我们的方法在Fréchet成立距离方面在视觉和定量上都能获得准确的结果,同时仍执行像素调节。我们还使用完全跨局部网络对纹理图像生成任务进行了评估。作为最终贡献,我们将该方法应用于经典的地质模拟应用程序。

Generative Adversarial Networks (GANs) have proven successful for unsupervised image generation. Several works have extended GANs to image inpainting by conditioning the generation with parts of the image to be reconstructed. Despite their success, these methods have limitations in settings where only a small subset of the image pixels is known beforehand. In this paper we investigate the effectiveness of conditioning GANs when very few pixel values are provided. We propose a modelling framework which results in adding an explicit cost term to the GAN objective function to enforce pixel-wise conditioning. We investigate the influence of this regularization term on the quality of the generated images and the fulfillment of the given pixel constraints. Using the recent PacGAN technique, we ensure that we keep diversity in the generated samples. Conducted experiments on FashionMNIST show that the regularization term effectively controls the trade-off between quality of the generated images and the conditioning. Experimental evaluation on the CIFAR-10 and CelebA datasets evidences that our method achieves accurate results both visually and quantitatively in term of Fréchet Inception Distance, while still enforcing the pixel conditioning. We also evaluate our method on a texture image generation task using fully-convolutional networks. As a final contribution, we apply the method to a classical geological simulation application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源