论文标题
Subriemanniann结构不满意Riemannian Brunn--Minkowski不平等现象
SubRiemanniann structures do not satisify Riemannian Brunn--Minkowski inequalities
论文作者
论文摘要
我们证明,曲率差异和最佳运输理论不受严格的subriemannian结构所满足的曲率和最佳运输理论,没有布鲁恩 - 米科夫斯基的不平等。我们的证明依靠与海森堡集团相同的方法,以及阿格拉切夫,巴里拉里和里齐的新调查,涉及次级北方结构的充足的正常测量学以及附在其上的地球层。
We prove that no Brunn--Minkowski inequality from the Riemannian theories of curvature-dimension and optimal transportation can by satisfied by a strictly subRiemannian structure. Our proof relies on the same method as for the Heisenberg group together with new investigations by Agrachev, Barillari and Rizzi on ample normal geodesics of subRieman-nian structures and the geodesic dimension attached to them.