论文标题
渐近平坦的参数化黑洞公制Kerr对称性
Asymptotically flat, parameterized black hole metric preserving Kerr symmetries
论文作者
论文摘要
最近,活动范围的望远镜合作,具有非常长的基线干涉观察结果,以$ \ sim5 $ \ sim5 $ schwarzschild radii的规模解决结构,涉及M87 $^*$中心,超级质量的黑洞居住,在Messier 87的中心,这是一个隔离的观察者。 KERR度量,仅通过其质量和自旋进行参数。超出Kerr之外的通用,参数化的空间使人们可以任意测试无头发定理与KERR结果的偏差,而没有事先理论知识或动机。在本文中,我们提出了具有可分离的大地测量方程(从而保留了Kerr黑洞的对称性)的新一般,固定,轴对称和渐近平坦的黑洞溶液,从而扩展了约翰逊先前的工作。在这个新的度量标准中,五个游离的非线性函数在参数上偏离了KERR结果,从而有效地转换为文献中存在的许多替代黑洞溶液。然后,我们得出了开普勒和上环状频率,轨道能和角动量的分析表达式,以及圆形赤道颗粒轨道的最内向稳定轨道的位置。我们还计算了新时空中光子环的图像,这对应于事件地平线望远镜拍摄的黑洞阴影图像的边界。我们最终将KERR结果的每个数量与度量的各种参数化进行了比较,发现,尤其是对于高度旋转的黑洞,这两种溶液显着不同意。这样的度量参数化允许一个人以模型独立的方式执行无头发测试,最后将约束映射到特定的重力理论。
Recently the Event Horizon Telescope Collaboration, with very-long baseline interferometric observations, resolved structure at the scale of $\sim5$ Schwarzschild radii about the center of M87$^*$, the supermassive black hole resident at the center of Messier 87. This important observation has paved the way for testing what is known as the "no-hair" theorem, stating that isolated black holes are described by the Kerr metric, parameterized only by their mass and spin. Generic, parameterized spacetimes beyond Kerr allow one to arbitrarily test the no-hair theorem for deviations from the Kerr result with no prior theoretical knowledge or motivation. In this paper, we present such a new general, stationary, axisymmetric and asymptotically flat black hole solution with separable geodesic equations (thus preserving symmetries of a Kerr black hole), extending the previous work of Johannsen. In this new metric, five free non-linear functions parameterically deviate from the Kerr result, allowing one to effectively transform to many alternative black hole solutions present in the literature. We then derive analytic expressions for the Keplerian and epicyclic frequencies, the orbital energy and angular momentum, and the location of the innermost stable orbit of circular equatorial particle orbits. We also compute the image of the photon rings in the new spacetime, which correspond to the boundary of the black hole shadow image taken by the Event Horizon Telescope. We finally compare each quantity for the Kerr result against various parameterizations of the metric, finding that, especially for highly rotating black holes, the two solutions disagree significantly. Such a metric parameterization allows one to perform the no-hair tests in a model-independent way, and finally map constraints to specific alternative theories of gravity.