论文标题

Cube2net:具有数据立方体组织的高效查询网络构建

cube2net: Efficient Query-Specific Network Construction with Data Cube Organization

论文作者

Yang, Carl, Liu, Mengxiong, He, Frank, Peng, Jian, Han, Jiawei

论文摘要

网络被广泛用于建模与交互的对象,并启用了各种下游应用程序。但是,在现实世界中,网络挖掘通常是在特定查询的对象集上进行的,该对象集不需要网络的构建和计算,包括数据集中的所有对象。在这项工作中,我们首次建议解决特定于查询的网络构建问题,以打破现有网络挖掘算法的效率瓶颈并促进各种下游任务。为了处理具有复杂属性的现实世界大型网络,我们建议利用发达的数据立方技术来组织网络对象W.R.T.他们的基本属性。然后开发出有效的增强学习算法,以自动探索数据立方体结构并构建最佳查询特定网络。通过在不同的实际大型数据集上对两个经典网络挖掘任务进行了广泛的实验,我们表明我们提出的Cube2Net管道是一般的,并且与没有数据Cube或强化学习的其他方法相比,与其他方法相比,在查询网络构建方面更加有效,更有效。

Networks are widely used to model objects with interactions and have enabled various downstream applications. However, in the real world, network mining is often done on particular query sets of objects, which does not require the construction and computation of networks including all objects in the datasets. In this work, for the first time, we propose to address the problem of query-specific network construction, to break the efficiency bottlenecks of existing network mining algorithms and facilitate various downstream tasks. To deal with real-world massive networks with complex attributes, we propose to leverage the well-developed data cube technology to organize network objects w.r.t. their essential attributes. An efficient reinforcement learning algorithm is then developed to automatically explore the data cube structures and construct the optimal query-specific networks. With extensive experiments of two classic network mining tasks on different real-world large datasets, we show that our proposed cube2net pipeline is general, and much more effective and efficient in query-specific network construction, compared with other methods without the leverage of data cube or reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源