论文标题

自动结构化变分推断

Automatic structured variational inference

论文作者

Ambrogioni, Luca, Lin, Kate, Fertig, Emily, Vikram, Sharad, Hinne, Max, Moore, Dave, van Gerven, Marcel

论文摘要

随机变异推理提供了一个有吸引力的选项,作为一种默认方法,用于可区分概率编程。但是,变分方法的性能取决于选择适当的变分家族的选择。在这里,我们介绍了自动结构变异推理(ASVI),这是一种完全自动化的方法,用于构建结构化变分家族,灵感来自结合贝叶斯模型的封闭形式更新。这些凸起的家庭族将输入概率计划的前向通过,因此可以捕获复杂的统计依赖性。凸 - 更高的家族具有与输入概率程序相同的空间和时间复杂性,因此对于包括连续变量和离散变量在内的非常大的模型家族而言,可以进行处理。我们在广泛的低维推理问题上验证自动变异方法。我们发现,与其他流行的方法(例如平均场方法和反向自回旋流量)相比,ASVI可以明显改善性能。我们在TensorFlow概率中提供了ASVI的开源实现。

Stochastic variational inference offers an attractive option as a default method for differentiable probabilistic programming. However, the performance of the variational approach depends on the choice of an appropriate variational family. Here, we introduce automatic structured variational inference (ASVI), a fully automated method for constructing structured variational families, inspired by the closed-form update in conjugate Bayesian models. These convex-update families incorporate the forward pass of the input probabilistic program and can therefore capture complex statistical dependencies. Convex-update families have the same space and time complexity as the input probabilistic program and are therefore tractable for a very large family of models including both continuous and discrete variables. We validate our automatic variational method on a wide range of low- and high-dimensional inference problems. We find that ASVI provides a clear improvement in performance when compared with other popular approaches such as the mean-field approach and inverse autoregressive flows. We provide an open source implementation of ASVI in TensorFlow Probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源