论文标题

2D ISING模型的临界参数对晶格尺寸的依赖性

Dependence of critical parameters of 2D Ising model on lattice size

论文作者

Kryzhanovsky, Boris V., Malsagov, Magomed Yu., Karandashev, Iakov M.

论文摘要

对于2D ISING模型,我们通过计算机模拟分析了热力学特征对旋转数量的依赖性。我们比较了使用Fisher-Kasteleyn算法获得的实验数据,该晶格上有$ n = l {\ times} l $ spins和渐近的OnSager解决方案($ n \ to \ infty $)。我们以$ n $的功能得出了关键参数的经验表达式,并在有限大小的晶格的情况下概括了Onsager解决方案。我们对自由能及其导数(内部能量,能量分散和热容量)的分析表达式准确地描述了计算机模拟的结果。我们表明,当$ n $增加临界点的热量时,随着$ LNN $的增加而增加。我们指定了由于系统有限尺寸而导致临界温度准确性的限制。同样在有限维情况下,我们获得了描述磁化和相关长度温度依赖性的表达式。通过动态大都市蒙特卡洛方法,他们与计算机模拟的结果达到了良好的定性协议。

For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with $N=l{\times}l$ spins and the asymptotic Onsager solution ($N\to\infty$). We derived empirical expressions for critical parameters as functions of $N$ and generalized the Onsager solution on the case of a finite-size lattice. Our analytical expressions for the free energy and its derivatives (the internal energy, the energy dispersion and the heat capacity) describe accurately the results of computer simulations. We showed that when $N$ increased the heat capacity in the critical point increased as $lnN$. We specified restrictions on the accuracy of the critical temperature due to finite size of our system. Also in the finite-dimensional case, we obtained expressions describing temperature dependences of the magnetization and the correlation length. They are in a good qualitative agreement with the results of computer simulations by means of the dynamic Metropolis Monte Carlo method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源