论文标题

在截短的多项式环上的曲线上的无穷小径流

Infinitesimal dilogarithm on curves over truncated polynomial rings

论文作者

Unver, Sinan

论文摘要

让$ c $在截短的多项式环$ k_m:= k [t]/(t^m)上,$ k $是一个特征性0。使用动机共同体学组$ {\ rm h}^{3} {3} _ {\ pazococal {$ a {m}(c)重量3的Bloch综合体3,我们每$ <r <2m <r <2m。因此,构造,因此不限制自己的三元理性功能,我们为任何$ m <r <2m,$而不是仅以$ m = 2的构建调节器。 $这将公园的工作泛滥,在该工作中,以$ r = m = m+1的方式处理了添加杂化周期,即循环接近0的情况。

Let $C$ be a smooth and projective curve over the truncated polynomial ring $k_m:=k[t]/(t^m), $ where $k$ is a field of characteristic 0. Using a candidate for the motivic cohomology group ${\rm H}^{3}_{\pazocal{M}}(C,\mathbb{Q}(3))$ based on the Bloch complex of weight 3, we construct regulators to $k$ for every $m<r<2m.$ Specializing this construction, we obtain an invariant $ρ_{m,r}(f \wedge g \wedge h)$ of rational functions $f,$ $g$ and $h$ on $C.$ The current work is a twofold generalization of our work on the infinitesimal Chow dilogarithm: we sheafify the previous construction and therefore do not restrict ourselves to triples of rational functions and we construct the regulator for any $m<r<2m,$ rather than only for $m=2.$ We also define regulators of cycles, which we expect to give a complete set of invariants for the infinitesimal part of ${\rm CH}^{2}(k_{m},3). $ This generalizes Park's work, where the additive Chow cycles, namely the case of cycles close to 0, is handled for $r=m+1.$ In this paper, we generalize the reciprocity theorem to pairs of cycles which are the same modulo $(t^m)$ and for any $m<r<2m.$ We expect the theory of the paper to give regulators on categories of motives over rings with nilpotents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源