论文标题

解决十亿个尺寸的背包问题

Solving Billion-Scale Knapsack Problems

论文作者

Zhang, Xingwen, Qi, Feng, Hua, Zhigang, Yang, Shuang

论文摘要

背包问题(KPS)在行业中很常见,但是解决KPS是NP-HARD的,并且仅在相对较小的规模上才能进行处理。本文以略有概括的形式研究了KP,并表明它们可以通过分布式算法在大小上几乎最佳地求解。通过现成的分布式计算框架(例如MPI,Hadoop,Spark),可以轻松实现所提出的方法。例如,我们的实施导致迄今为止已知的最有效的KP求解器之一 - 能够以前所未有的规模求解KP(例如,可以在1小时内解决具有10亿个决策变量和10亿个约束的KPS)。该系统已被部署到生产中,并每天召集,从而对Ant Financial产生了重大业务影响。

Knapsack problems (KPs) are common in industry, but solving KPs is known to be NP-hard and has been tractable only at a relatively small scale. This paper examines KPs in a slightly generalized form and shows that they can be solved nearly optimally at scale via distributed algorithms. The proposed approach can be implemented fairly easily with off-the-shelf distributed computing frameworks (e.g. MPI, Hadoop, Spark). As an example, our implementation leads to one of the most efficient KP solvers known to date -- capable to solve KPs at an unprecedented scale (e.g., KPs with 1 billion decision variables and 1 billion constraints can be solved within 1 hour). The system has been deployed to production and called on a daily basis, yielding significant business impacts at Ant Financial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源