论文标题

头脑风暴生成对抗网络(BGANS):带有分布式私有数据集的多代理生成模型

Brainstorming Generative Adversarial Networks (BGANs): Towards Multi-Agent Generative Models with Distributed Private Datasets

论文作者

Ferdowsi, Aidin, Saad, Walid

论文摘要

为了达到高度学习的准确性,必须由充分代表数据空间的大型数据集喂食生成的对抗网络(GAN)。但是,在许多情况下,可用的数据集可能受到限制并分布在多个代理之间,每个代理都试图自行学习数据的分布。在这种情况下,代理商通常不希望共享其本地数据,因为它会导致大型数据集的通信开销。在本文中,为了解决这个多代理的GAN问题,提出了一种新颖的头脑风暴GAN(BGAN)结构,使用多种代理可以在以完全分布的方式运行时生成现实的数据样本。 BGAN允许代理商从其他代理商那里获取信息,而无需共享其真实数据集,但通过共享其生成的数据样本``头脑风暴''。与现有的分布式GAN解决方案相反,拟议的BGAN架构设计为完全分布,并且不需要任何集中式控制器。此外,BGAN被证明是可扩展的,不取决于代理深神经网络(DNN)的超参数,从而使代理具有不同的DNN体系结构。从理论上讲,BGAN代理之间的相互作用被分析为一种独特的NASH平衡的游戏。实验结果表明,与其他分布式GAN架构相比,BGAN可以生成具有更高质量和较低詹森 - 香农发散(JSD)和Frèchet成立距离(FID)的真实数据样本。

To achieve a high learning accuracy, generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space. However, in many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own. In such scenarios, the agents often do not wish to share their local data as it can cause communication overhead for large datasets. In this paper, to address this multi-agent GAN problem, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner. BGAN allows the agents to gain information from other agents without sharing their real datasets but by ``brainstorming'' via the sharing of their generated data samples. In contrast to existing distributed GAN solutions, the proposed BGAN architecture is designed to be fully distributed, and it does not need any centralized controller. Moreover, BGANs are shown to be scalable and not dependent on the hyperparameters of the agents' deep neural networks (DNNs) thus enabling the agents to have different DNN architectures. Theoretically, the interactions between BGAN agents are analyzed as a game whose unique Nash equilibrium is derived. Experimental results show that BGAN can generate real-like data samples with higher quality and lower Jensen-Shannon divergence (JSD) and Frèchet Inception distance (FID) compared to other distributed GAN architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源