论文标题
经典类型的舒伯特多项式的主要专业
Principal specializations of Schubert polynomials in classical types
论文作者
论文摘要
A型舒伯特多项式的主要专业化是一个非凡的公式,是一个加权总和,而不是简化的单词。采用适当的限制将其转变为Lam,Lee和Shimozono最近引入的后稳性舒伯特多项式的身份。本说明确定了后一种公式的一些类似物,用于B,C和D类型中的舒伯特多项式的主要专业。作为一个相关应用,我们得出了一个简单的证据,证明了涉及Grothendieck多项式的互动公式。
There is a remarkable formula for the principal specialization of a type A Schubert polynomial as a weighted sum over reduced words. Taking appropriate limits transforms this to an identity for the backstable Schubert polynomials recently introduced by Lam, Lee, and Shimozono. This note identifies some analogues of the latter formula for principal specializations of Schubert polynomials in classical types B, C, and D. We also describe some more general identities for Grothendieck polynomials. As a related application, we derive a simple proof of a pipe dream formula for involution Grothendieck polynomials.