论文标题
ESPACES FC(G(f))和内镜
Espaces FC(g(F)) et endoscopie
论文作者
论文摘要
令F为P-ADIC场,让G为在F上定义的连接的还原组。我们假设P很大。表示G的lie代数。我们在平滑函数的空间上适当地将傅立叶变换归一化,并在g(f)上紧凑,这使得f cossociates f^f^。 在上一篇论文中,我们定义了函数f的空间FC(g(f)),以使f和f^的轨道积分对于g(f)的每个元素的轨道积分为0,这不是拓扑结构。这些空间与内窥镜转移兼容。我们在这里假设G绝对是准简单的,并且仅连接。我们以直接的子空间总和来定义空间FC(g(f))的分解,以使内窥镜转移在每个子空间上变得清晰(或多或少)。特别是,如果G是准切片,我们描述了Fc(g(f))中“稳定”元素的子空间。
Let F be a p-adic field and let G be a connected reductive group defined over F. We assume p is big. Denote g the Lie algebra of G. We normalize suitably a Fourier-transform on the space of smooth functions with compact support on g(F), which to f associates f^. In a preceding paper, we have defined the space FC(g(F)) of functions f such that the orbital integrals of f and of f^ are 0 for each element of g(F) which is not topologically nilpotent. These spaces are compatible with endoscopic transfer. We assume here that G is absolutely quasi-simple and simply connected. We define a decomposition of the space FC(g(F)) in a direct sum of subspaces such that the endoscopic transfer becomes (more or less) clear on each subspace. In particular, if G is quasi-split, we describe the subspace of "stable" elements in FC(g(F)).