论文标题
基于深度学习的无监督和半监督的分类
Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus
论文作者
论文摘要
透明的角膜是眼睛的窗户,促进了光线的进入,并控制着眼睛内部的光线运动。角膜至关重要,造成眼睛折射率的75%。角膜结构是一种进步和多因素角膜退行性疾病,影响了2000年全球1个人。目前,除了角膜移植以外,无法治愈圆锥角膜的治疗方法,用于晚期角膜角膜结构或角膜交联,这只能阻止KC进展。准确识别微妙的KC或KC进展的能力具有至关重要的临床意义。迄今为止,对KC患者进行分类的有用模型几乎没有共识,因此抑制了准确预测疾病进展的能力。 在本文中,我们利用机器学习来分析来自124名KC患者的数据,包括地形和临床变量。受监督的多层感知器和无监督的变异自动编码器模型都用于对KC患者进行分类,以参考现有的Amsler-Krumeich(A-K)分类系统。两种方法都可以高精度,而无监督的方法显示出更好的性能。结果表明,选择29个变量的无监督方法可能是为临床医生提供自动分类工具的强大工具。这些结果为圆锥角膜的进展和处理提供了一个平台。
The transparent cornea is the window of the eye, facilitating the entry of light rays and controlling focusing the movement of the light within the eye. The cornea is critical, contributing to 75% of the refractive power of the eye. Keratoconus is a progressive and multifactorial corneal degenerative disease affecting 1 in 2000 individuals worldwide. Currently, there is no cure for keratoconus other than corneal transplantation for advanced stage keratoconus or corneal cross-linking, which can only halt KC progression. The ability to accurately identify subtle KC or KC progression is of vital clinical significance. To date, there has been little consensus on a useful model to classify KC patients, which therefore inhibits the ability to predict disease progression accurately. In this paper, we utilised machine learning to analyse data from 124 KC patients, including topographical and clinical variables. Both supervised multilayer perceptron and unsupervised variational autoencoder models were used to classify KC patients with reference to the existing Amsler-Krumeich (A-K) classification system. Both methods result in high accuracy, with the unsupervised method showing better performance. The result showed that the unsupervised method with a selection of 29 variables could be a powerful tool to provide an automatic classification tool for clinicians. These outcomes provide a platform for additional analysis for the progression and treatment of keratoconus.