论文标题

Cosmovae:用于CMB图像介入的变异自动编码器

CosmoVAE: Variational Autoencoder for CMB Image Inpainting

论文作者

Yi, Kai, Guo, Yi, Fan, Yanan, Hamann, Jan, Wang, Yu Guang

论文摘要

宇宙微波背景辐射(CMB)对于理解早期宇宙和宇宙学常数的精确估计至关重要。由于银河系中的热粉尘噪声受到污染,是二维球上图像的CMB图缺失了观察结果,主要集中在赤道区域上。 CMB图的噪声对宇宙学参数的估计精度有重大影响。介入CMB图可以有效地减少参数估计的不确定性。在本文中,我们提出了一个基于深度学习的变异自动编码器--- cosmovae,以恢复CMB图的缺失观察结果。 Cosmovae的输入和输出是平方图像。为了生成培训,验证和测试数据集,我们通过笛卡尔投影将全套CMB映射分为许多小图像。 Cosmovae通过将高斯随机场的角功率谱作为潜在变量,将物理量分配给VAE网络的参数。 Cosmovae采用了新的损失功能来提高模型的学习绩效,该功能由$ \ ell_1 $重建损失,编码器网络后分布之间的kullback-leibler差异以及潜在变量的先前分布,感知损失和总差异及时器。所提出的模型实现了Planck \ texttt {Commander} 2018 CMB MAP内置的最先进的性能状态。

Cosmic microwave background radiation (CMB) is critical to the understanding of the early universe and precise estimation of cosmological constants. Due to the contamination of thermal dust noise in the galaxy, the CMB map that is an image on the two-dimensional sphere has missing observations, mainly concentrated on the equatorial region. The noise of the CMB map has a significant impact on the estimation precision for cosmological parameters. Inpainting the CMB map can effectively reduce the uncertainty of parametric estimation. In this paper, we propose a deep learning-based variational autoencoder --- CosmoVAE, to restoring the missing observations of the CMB map. The input and output of CosmoVAE are square images. To generate training, validation, and test data sets, we segment the full-sky CMB map into many small images by Cartesian projection. CosmoVAE assigns physical quantities to the parameters of the VAE network by using the angular power spectrum of the Gaussian random field as latent variables. CosmoVAE adopts a new loss function to improve the learning performance of the model, which consists of $\ell_1$ reconstruction loss, Kullback-Leibler divergence between the posterior distribution of encoder network and the prior distribution of latent variables, perceptual loss, and total-variation regularizer. The proposed model achieves state of the art performance for Planck \texttt{Commander} 2018 CMB map inpainting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源