论文标题

学习结构长期依赖性以进行顺序建议

Learning to Structure Long-term Dependence for Sequential Recommendation

论文作者

Cai, Renqin, Wang, Qinglei, Wang, Chong, Liu, Xiaobing

论文摘要

顺序建议根据用户的历史动作序列推荐项目。它的主要挑战是如何有效地模拟从遥远的行动到要预测的动作的影响,即认识长期依赖性结构;而且它仍然是一个毫无疑问的问题。为了更好地模拟长期依赖性结构,我们在这项工作中提出了一个门口隆格雷克的解决方案。为了考虑长期依赖性,GatedLongRec提取了与$ K $相关类别的遥远动作,该类别具有顶部的$ K $ Gating网络的持续意图,并利用长期编码器在这些已确定的操作中编码过渡模式。由于无法直接观察到用户意图,因此我们利用有关操作(即其相关项目的类别)的可用侧面信息来推断意图。进行端到端训练以估计意图表示并预测顺序建议的下一个动作。在两个大数据集上进行的广泛实验表明,所提出的解决方案可以识别长期依赖性的结构,从而大大改善了顺序建议。

Sequential recommendation recommends items based on sequences of users' historical actions. The key challenge in it is how to effectively model the influence from distant actions to the action to be predicted, i.e., recognizing the long-term dependence structure; and it remains an underexplored problem. To better model the long-term dependence structure, we propose a GatedLongRec solution in this work. To account for the long-term dependence, GatedLongRec extracts distant actions of top-$k$ related categories to the user's ongoing intent with a top-$k$ gating network, and utilizes a long-term encoder to encode the transition patterns among these identified actions. As user intent is not directly observable, we take advantage of available side-information about the actions, i.e., the category of their associated items, to infer the intents. End-to-end training is performed to estimate the intent representation and predict the next action for sequential recommendation. Extensive experiments on two large datasets show that the proposed solution can recognize the structure of long-term dependence, thus greatly improving the sequential recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源