论文标题

RACAH代数:概述和最新结果

The Racah algebra: An overview and recent results

论文作者

De Bie, Hendrik, Iliev, Plamen, van de Vijver, Wouter, Vinet, Luc

论文摘要

审查了RACAH代数$ \ Mathcal {R} _n $等级$ n -2 $的最新结果。 $ \ mathcal {r} _n $是根据生成器和关系定义的,并且位于$ \ mathfrak {su}(1,1)$的对角线中的中央器中,$ \ mathcal {u}(\ mathfrak {\ mathfrak)讨论了它与多元RACAH多项式的联系。它被证明是$(n -1)$ - 球体上通用整合模型的对称代数,并提供了许多有趣的实现。

Recent results on the Racah algebra $\mathcal{R}_n$ of rank $n - 2$ are reviewed. $\mathcal{R}_n$ is defined in terms of generators and relations and sits in the centralizer of the diagonal action of $\mathfrak{su}(1,1)$ in $\mathcal{U}(\mathfrak{su}(1,1))^{\otimes n}$. Its connections with multivariate Racah polynomials are discussed. It is shown to be the symmetry algebra of the generic superintegrable model on the $ (n-1)$ - sphere and a number of interesting realizations are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源