论文标题
非热式半迪拉克半金属
Non-Hermitian semi-Dirac semi-metals
论文作者
论文摘要
最近,通过考虑拓扑中拓扑在非炎症系统中的作用,已经提出了许多新颖和外来的阶段,它们的新兴特性具有广泛的当前感兴趣。在这项工作中,我们提出了半迪拉克半学分的非富富泛化,该术具有沿一个动量方向的线性分散,另一个沿另一个方向具有二次性分散体。我们研究了在存在粒子增益和减脂项的情况下,在这种二维半迪拉克半学的拓扑相变。我们表明,这样的非热词术语创建了源自每个半迪拉克点的特殊点。我们使用绕组数和涡度作为系统的拓扑数来绘制模型的拓扑相图。通过数值和分析计算,我们在一个类别中检查了不同类型的半迪拉克模型的边缘状态的性质,并在一个类别中建立了庞大的边界对应关系和非铁皮皮肤效应的不存在。另一方面,对于具有不对称跳跃的其他类别的半迪拉克模型,我们恢复了非富甲皮肤效应,这是通常在非炎热拓扑系统中存在的异常特征。
Recently, many novel and exotic phases have been proposed by considering the role of topology in non-Hermitian systems, and their emergent properties are of wide current interest. In this work we propose the non-Hermitian generalization of semi-Dirac semimetals, which feature a linear dispersion along one momentum direction and a quadratic one along the other. We study the topological phase transitions in such two-dimensional semi-Dirac semimetals in the presence of a particle gain-and-loss term. We show that such a non-Hermitian term creates exceptional points originating out of each semi-Dirac point. We map out the topological phase diagram of our model, using winding number and vorticity as topological invariants of the system. By means of numerical and analytical calculations, we examine the nature of edge states for different types of semi-Dirac models and establish bulk-boundary correspondence and absence of the non-Hermitian skin effect, in one class. On the other hand, for other classes of semi-Dirac models with asymmetric hopping, we restore the non-Hermitian skin effect, an anomalous feature usually present in non-Hermitian topological systems.