论文标题

质量通胀和$ c^2 $ -INEXTENDIBLY的球形对称为对称标量磁场动态黑洞

Mass inflation and the $C^2$-inextendibility of spherically symmetric charged scalar field dynamical black holes

论文作者

Van de Moortel, Maxime

论文摘要

长期以来,在大规模通货膨胀情况下,动态黑洞的凯奇(Cauchy)地平线会遭受弱的无效奇异性。我们在球形对称性中研究Einstein-Maxwell-Klein-gordon方程和\ textit {虽然我们不直接显示大量通胀},但我们获得了“大规模通货膨胀/ridigity”二分法。更准确地说,我们证明了事件范围内带电标量字段的(足够缓慢)的衰减,即从时间般的无穷大的cauchy hizon是$ \ Mathcal {ch} _ {i^+} = \ nathcal {d} \ cap \ cup \ mathcal {s y Mathcal {s y Mathcal {s y Mathcal) $ \ MATHCAL {D} $和$ \ MATHCAL {S} $,这样: _ $ \ MATHCAL {D} $(动力学集)是过去的集合,鹰质量吹起了(大众通货膨胀方案)。 _ $ \ MATHCAL {S} $(静态集)是Reissner-NordströmCauchyHorizo​​n的未来集合等轴测图。 结果,我们将Cauchy Horizo​​ns的新颖分类分为三种:动力学($ \ Mathcal {s} = \ emptySet $),static($ \ Mathcal {d} = \ emptyset $)或混合,并证明$ \ nathcal {Ch} _ {ch} _ {i^+} $ c {i^i^+globly $ c^2 $ - $ c^2 $。我们的主要动机是$ c^2 $强宇宙审查制度的猜想,用于现实的球形崩溃模型,其中充电的物质模仿了角动量的排斥作用:在我们的情况下,爱因斯坦 - 麦克斯韦 - 克莱恩 - 克莱恩 - 克莱恩·戈登系统在一次性的太空时间上。结果,我们在球形对称性中证明: - 两次渐近平坦的空间时间为$ c^2 $ - future-intendendible,即$ c^2 $ cosmic cosmic审查对爱因斯坦 - 麦克斯韦 - 克莱恩·戈登(Einstein-Maxwell-Klein-Gordon)都是正确的,假设事件视野的标量衰减以预期的利率为单位。 - 在一种情况下,从时间般的无穷大散发出的凯奇(Cauchy)地平线为$ c^2 $ -INEXTENDIBLE。该结果抑制了$ C^2 $ cosmic censorship的主要障碍。

It has long been suggested that the Cauchy horizon of dynamical black holes is subject to a weak null singularity, under the mass inflation scenario. We study in spherical symmetry the Einstein-Maxwell-Klein-Gordon equations and \textit{while we do not directly show mass inflation}, we obtain a "mass inflation/ridigity" dichotomy. More precisely, we prove assuming (sufficiently slow) decay of the charged scalar field on the event horizon, that the Cauchy horizon emanating from time-like infinity is $\mathcal{CH}_{i^+}= \mathcal{D} \cup \mathcal{S}$ for two (possibly empty) disjoint connected sets $\mathcal{D}$ and $\mathcal{S}$ such that: _$\mathcal{D}$ (the dynamical set) is a past set on which the Hawking mass blows up (mass inflation scenario). _$\mathcal{S}$ (the static set) is a future set isometric to a Reissner--Nordström Cauchy horizon i.e.\ the radiation is zero on $\mathcal{S}$. As a consequence, we establish a novel classification of Cauchy horizons into three types: dynamical ($\mathcal{S}=\emptyset$), static ($\mathcal{D}=\emptyset$) or mixed, and prove that $\mathcal{CH}_{i^+}$ is globally $C^2$-inextendible. Our main motivation is the $C^2$ Strong Cosmic Censorship Conjecture for a realistic model of spherical collapse in which charged matter emulates the repulsive role of angular momentum: in our case the Einstein-Maxwell-Klein-Gordon system on one-ended space-times. As a result, we prove in spherical symmetry that: - two-ended asymptotically flat space-times are $C^2$-future-inextendible i.e. $C^2$ Strong Cosmic Censorship is true for Einstein-Maxwell-Klein-Gordon, assuming the decay of the scalar field on the event horizon at the expected rate. - In the one-ended case, the Cauchy horizon emanating from time-like infinity is $C^2$-inextendible. This result suppresses the main obstruction to $C^2$ Strong Cosmic Censorship in spherical collapse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源