论文标题

Codimension- $ 1 $简单可划分的凸域

Codimension-$1$ Simplices in Divisible Convex Domains

论文作者

Bobb, Martin D.

论文摘要

在凸出域中正确嵌入简单范围$ω\ subset \ mathbb {r} \ textrm {p}^d $在里曼尼亚人的歧管中的表现有些类似于公寓,所以我们称它们称为公寓。我们表明,Codimension- $ 1 $ FLATS具有图像,这是一个有限的脱节$(D-1)$ -Tori的有限集合。如果此虚拟Tori的集合是非空的,则其补充的组成部分是带有$ D $ d $ cusps的凸入式凸出歧管。

Properly embedded simplices in a convex divisible domain $Ω\subset \mathbb{R} \textrm{P}^d$ behave somewhat like flats in Riemannian manifolds, so we call them flats. We show that the set of codimension-$1$ flats has image which is a finite collection of disjoint virtual $(d-1)$-tori in the compact quotient manifold. If this collection of virtual tori is non-empty, then the components of its complement are cusped convex projective manifolds with type $d$ cusps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源