论文标题
超材料和cesàro融合
Metamaterials and Cesàro convergence
论文作者
论文摘要
在本文中,我们表明,物质中的线性介电和磁性材料遵守一种特殊的数学特性,称为cesàro融合。然后,我们还表明,在Riemann Zeta函数方面,线性介电常数\&渗透性对复杂平面的分析延续。超材料是具有负折射率的制造材料。这些材料反过来取决于线性介电和磁性材料的介电常数\&渗透性。因此,线性介电和磁性材料的CESàRO收敛性可以用于制造超材料。
In this paper, we show that the linear dielectrics and magnetic materials in matter obey a special kind of mathematical property known as Cesàro convergence. Then, we also show that the analytical continuation of the linear permittivity \& permeability to a complex plane in terms of Riemann zeta function. The metamaterials are fabricated materials with a negative refractive index. These materials, in turn, depend on permittivity \& permeability of the linear dielectrics and magnetic materials. Therefore, the Cesàro convergence property of the linear dielectrics and magnetic materials may be used to fabricate the metamaterials.