论文标题
匹配数字和边缘理想的维度
Matching numbers and dimension of edge ideals
论文作者
论文摘要
令$ g $为有限的简单图形,上面的顶点套装$ v(g)= \ {x_ {1},\ ldots,x_ {n} \} $和匹配$(g)$,min-match $(g)$和ind-match $(g)$(g)$匹配号码,最小匹配号码,最小匹配号码和$ g $ $ g $的匹配号,相应。令$ k [v(g)] = k [x_ {1},\ ldots,x_ {n}] $表示在field $ k $和$ k $和$ i(g)\ subset k [v(g)] $ $ g $的边缘的ed y(g)\ subset k $上的多项式环。已经研究了这些图理论不变性和商理论不变性的关系$ k [v(g)/i(g)$之间的关系。在本文中,我们研究了匹配$(g)$,min-match $(g)$,ind-match $(g)$和$ \ dim k [v(g)]/i(g)$之间的关系。
Let $G$ be a finite simple graph on the vertex set $V(G) = \{x_{1}, \ldots, x_{n}\}$ and match$(G)$, min-match$(G)$ and ind-match$(G)$ the matching number, minimum matching number and induced matching number of $G$, respectively. Let $K[V(G)] = K[x_{1}, \ldots, x_{n}]$ denote the polynomial ring over a field $K$ and $I(G) \subset K[V(G)]$ the edge ideal of $G$. The relationship between these graph-theoretic invariants and ring-theoretic invariants of the quotient ring $K[V(G)]/I(G)$ has been studied. In the present paper, we study the relationship between match$(G)$, min-match$(G)$, ind-match$(G)$ and $\dim K[V(G)]/I(G)$.