论文标题
英特尔量子模拟器:量子电路的云高性能模拟器
Intel Quantum Simulator: A cloud-ready high-performance simulator of quantum circuits
论文作者
论文摘要
量子计算机的经典模拟将继续在量子信息科学的进度中起着至关重要的作用,包括量子算法的数值研究以及建模噪声和误差。在这里,我们介绍了以前称为Qhipster的Intel Quantum Simulator(IQS)的最新版本。软件的高性能计算(HPC)功能使用户能够利用超级计算机提供的可用硬件资源以及可用的公共云计算基础结构。为了利用后一个平台,以及对每个单独的量子状态的分布式仿真,IQS允许对计算资源进行细分以并行模拟相关电路池。我们强调了分布式算法的技术实施以及有关新池功能的详细信息。我们还包括一些基本基准(最多42个量子位),并使用HPC基础架构获得的性能结果。最后,我们使用智商模拟一个方案,其中许多量子设备并行运行以实现量子近似优化算法,以粒子群优化为经典子例程。结果表明,该经典优化算法的超参数取决于一个量子电路模拟的总数,一个人具有带宽。英特尔量子模拟器已通过允许许可发布开源,旨在模拟大量Qubits,以模拟并联运行的多个量子设备,和/或研究折叠和其他硬件错误对计算结果的影响。
Classical simulation of quantum computers will continue to play an essential role in the progress of quantum information science, both for numerical studies of quantum algorithms and for modeling noise and errors. Here we introduce the latest release of Intel Quantum Simulator (IQS), formerly known as qHiPSTER. The high-performance computing (HPC) capability of the software allows users to leverage the available hardware resources provided by supercomputers, as well as available public cloud computing infrastructure. To take advantage of the latter platform, together with the distributed simulation of each separate quantum state, IQS allows to subdivide the computational resources to simulate a pool of related circuits in parallel. We highlight the technical implementation of the distributed algorithm and details about the new pool functionality. We also include some basic benchmarks (up to 42 qubits) and performance results obtained using HPC infrastructure. Finally, we use IQS to emulate a scenario in which many quantum devices are running in parallel to implement the quantum approximate optimization algorithm, using particle swarm optimization as the classical subroutine. The results demonstrate that the hyperparameters of this classical optimization algorithm depends on the total number of quantum circuit simulations one has the bandwidth to perform. Intel Quantum Simulator has been released open-source with permissive licensing and is designed to simulate a large number of qubits, to emulate multiple quantum devices running in parallel, and/or to study the effects of decoherence and other hardware errors on calculation results.