论文标题
富人的富裕建议:利用动态和静态的信息
Rich-Item Recommendations for Rich-Users: Exploiting Dynamic and Static Side Information
论文作者
论文摘要
在本文中,我们研究了推荐系统的问题,其中要推荐的用户和项目是具有多种实体类型的丰富数据结构,并以图形形式具有多种侧面信息来源。我们为捕获现代现实世界建议的复杂性并概括许多现有配方的复杂性的问题提供了一般的表述。在我们的公式中,每个需要推荐的用户/文档以及要推荐的每个项目或标签,两者均由一组静态实体和动态组件进行建模。实体之间的关系由几个加权的两部分图捕获。为了有效利用这些复杂的相互作用并了解推荐模型,我们提出了一个基于多个图形CNN的新型深度学习结构。 Medres使用AL-GCN,这是一种新型的图形卷积网络块,它利用了基础图的强大代表性特征。此外,为了捕获不同用户对系统的高度异质参与,对要推荐的项目数量的限制,我们提出了一种新颖的排名指标pap@k,以及一种直接优化度量标准的方法。我们证明了我们的方法对两个基准的有效性:a)引文数据,b)flickr数据。此外,我们还提出了两个现实世界的案例研究和我们的Medres架构。我们展示了如何使用我们的技术来自然地对消息建议问题进行建模,并且团队在Microsoft团队(MSTEAM)产品中推荐问题,并证明它比生产级模型更准确。
In this paper, we study the problem of recommendation system where the users and items to be recommended are rich data structures with multiple entity types and with multiple sources of side-information in the form of graphs. We provide a general formulation for the problem that captures the complexities of modern real-world recommendations and generalizes many existing formulations. In our formulation, each user/document that requires a recommendation and each item or tag that is to be recommended, both are modeled by a set of static entities and a dynamic component. The relationships between entities are captured by several weighted bipartite graphs. To effectively exploit these complex interactions and learn the recommendation model, we propose MEDRES- a multiple graph-CNN based novel deep-learning architecture. MEDRES uses AL-GCN, a novel graph convolution network block, that harnesses strong representative features from the underlying graphs. Moreover, in order to capture highly heterogeneous engagement of different users with the system and constraints on the number of items to be recommended, we propose a novel ranking metric pAp@k along with a method to optimize the metric directly. We demonstrate effectiveness of our method on two benchmarks: a) citation data, b) Flickr data. In addition, we present two real-world case studies of our formulation and the MEDRES architecture. We show how our technique can be used to naturally model the message recommendation problem and the teams recommendation problem in the Microsoft Teams (MSTeams) product and demonstrate that it is 5-6% points more accurate than the production-grade models.