论文标题

通过gershgorin盘对准图公制学习

Graph Metric Learning via Gershgorin Disc Alignment

论文作者

Yang, Cheng, Cheung, Gene, Hu, Wei

论文摘要

我们提出了一个快速通用的无投影公制学习框架,其中最小化目标$ \ min _ {\ textbf {m} \ in \ mathcal {s}} q(\ textbf {m})$是cONVEX cONVEX cONVEX的cONVEX不同函数$ \ MATHCAL {S} $的通用图Laplacian矩阵,用于具有正边缘权重和节点度的连接图。与文献中常见的低级度量矩阵不同,$ \ Mathcal {s} $包括重要的阳性式矩阵作为极限的特殊情况。 The key idea for fast optimization is to rewrite the positive definite cone constraint in $\mathcal{S}$ as signal-adaptive linear constraints via Gershgorin disc alignment, so that the alternating optimization of the diagonal and off-diagonal terms in $\textbf{M}$ can be solved efficiently as linear programs via Frank-Wolfe iterations.我们证明,使用$ \ \ textbf {m textbf {m} $的第一个特征向量$ \ textbf {v} $可以完美对齐gershgorin碟片,我们使用本地最佳的块预处理的共轭梯度(lobpcg)进行迭代,以迪金纳尔 / diagonal / off-diagonal / off-diagonal eart-diagonal earmiss iptigiake nise tealeral迭代。实验表明,我们有效计算的图度矩阵优于使用竞争方法在分类任务方面学习的指标。

We propose a fast general projection-free metric learning framework, where the minimization objective $\min_{\textbf{M} \in \mathcal{S}} Q(\textbf{M})$ is a convex differentiable function of the metric matrix $\textbf{M}$, and $\textbf{M}$ resides in the set $\mathcal{S}$ of generalized graph Laplacian matrices for connected graphs with positive edge weights and node degrees. Unlike low-rank metric matrices common in the literature, $\mathcal{S}$ includes the important positive-diagonal-only matrices as a special case in the limit. The key idea for fast optimization is to rewrite the positive definite cone constraint in $\mathcal{S}$ as signal-adaptive linear constraints via Gershgorin disc alignment, so that the alternating optimization of the diagonal and off-diagonal terms in $\textbf{M}$ can be solved efficiently as linear programs via Frank-Wolfe iterations. We prove that the Gershgorin discs can be aligned perfectly using the first eigenvector $\textbf{v}$ of $\textbf{M}$, which we update iteratively using Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) with warm start as diagonal / off-diagonal terms are optimized. Experiments show that our efficiently computed graph metric matrices outperform metrics learned using competing methods in terms of classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源