论文标题

伊斯坦布尔和荷兰的2009 A(H1N1)流行的意外参数范围

Unexpected parameter ranges of the 2009 A(H1N1) epidemic for Istanbul and the Netherlands

论文作者

Demirci, Ali, Dobie, Ayse Peker, Bilge, Ayse Humeyra, Ahmetolan, Semra

论文摘要

土耳其伊斯坦布尔的2009 A(H1N1)流行病的数据在收集的数据方面是独一无二的,其中不仅包括住院,而且还包括大流行期间记录的死亡信息。对该数据的分析表明,医院转诊和死亡之间发生了意外的时间转移。多阶段的SIR和SEIR模型[21]解释了这种不符合SIR和SEIR模型的时间变化。在这项研究中,我们证明了这些模型的延迟是二次近似值内感染性时期的一半,我们确定流行病参数$ r_0 $,$ t $和2009 A(H1N1)伊斯坦布尔和荷兰的流行病的2009 A(H1N1)流行病的流行病的估计量累积的数据累积的效果估计了累积的效果。为了获得最佳拟合模型,使用了两个不同的错误标准,即在整个观察期间的$ L_2 $规范和数据的初始部分。据观察,就两个条件而言,“良好”模型的参数沿着$ t $ - $ r_0 $平面的一条线结合,而不是在“最佳”模型周围均匀分散。由于这个事实表明存在几乎不变的数量,给出了参数的间隔估计。由于流行病的初始阶段受到医疗干预效果的影响较小,因此基于数据的初始部分的误差规范是首选的。但是,所呈现的参数范围远远超出了通常的流感流行参数值的范围。为了确认我们对伊斯坦布尔数据的观察结果,荷兰的2009 A(H1N1)流行也使用了与伊斯坦布尔相似的人口密度相同的误差标准。与伊斯坦布尔情况一样,参数范围与通常的流感流行参数值不符。

The data of the 2009 A(H1N1) epidemic in Istanbul, Turkey is unique in terms of the collected data, which include not only the hospitalization but also the fatality information recorded during the pandemic. The analysis of this data displayed an unexpected time shift between the hospital referrals and fatalities. This time shift, which does not conform to the SIR and SEIR models, was explained by multi-stage SIR and SEIR models [21]. In this study we prove that the delay for these models is half of the infectious period within a quadratic approximation, and we determine the epidemic parameters $R_0$, $T$ and $I_0$ of the 2009 A(H1N1) Istanbul and Netherlands epidemics.These epidemic parameters were estimated by comparing the normalized cumulative fatality data with the solutions of the SIR model. Two different error criteria, the $L_2$ norms of the error over the whole observation period and over the initial portion of the data, were used in order to obtain the best-fitting models. It was observed that, with respect to both criteria, the parameters of "good" models were agglomerated along a line in the $T$-$R_0$ plane, instead of being scattered uniformly around a "best" model. As this fact indicates the existence of a nearly invariant quantity, interval estimates for the parameters were given. As the initial phase of the epidemics were less influenced by the effects of medical interventions, the error norm based on the initial portion of the data was preferred. However, the presented parameter ranges are well out of the range for the usual influenza epidemic parameter values. To confirm our observations on the Istanbul data, the same error criteria were also used for the 2009 A(H1N1) epidemic for the Netherlands, which has a similar population density as in Istanbul. As in the Istanbul case, the parameter ranges do not match the usual influenza epidemic parameter values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源