论文标题
扫描的单电子探针在硅电子设备中
Scanned single-electron probe inside a silicon electronic device
论文作者
论文摘要
固态设备可以在原子量表上制造,其应用程序从经典逻辑到当前标准和量子技术不等。虽然非常希望探测这些设备和它们在原子尺度上托管的量子状态,但典型的方法依赖于长期的电容相互作用,从而使这很难。在这里,我们使用低温扫描隧道显微镜的偏置尖端,使用直接在所需位置的设备内诱导的局部电子量子点探测原子尺度上的硅电子设备。我们使用尖端的子-NM位置控制量子点与设备源储层的短距离隧道耦合相互作用进行了控制,并使用将电压施加在设备的栅极储层上。尽管$ \ sim 1 $ nm的量子点靠近金属尖端,但我们发现该门提供了足够的电容以实现高度的电力控制。结合原子尺度成像,我们使用量子点来探测施加的电场,并在设备中的单个缺陷中充电。预计这种能力有助于理解原子级设备以及在其中实现的量子状态。
Solid-state devices can be fabricated at the atomic scale, with applications ranging from classical logic to current standards and quantum technologies. While it is very desirable to probe these devices and the quantum states they host at the atomic scale, typical methods rely on long-ranged capacitive interactions, making this difficult. Here we probe a silicon electronic device at the atomic scale using a localized electronic quantum dot induced directly within the device at a desired location, using the biased tip of a low-temperature scanning tunneling microscope. We demonstrate control over short-ranged tunnel coupling interactions of the quantum dot with the device's source reservoir using sub-nm position control of the tip, and the quantum dot energy level using a voltage applied to the device's gate reservoir. Despite the $\sim 1$nm proximity of the quantum dot to the metallic tip, we find the gate provides sufficient capacitance to enable a high degree of electric control. Combined with atomic scale imaging, we use the quantum dot to probe applied electric fields and charge in individual defects in the device. This capability is expected to aid in the understanding of atomic-scale devices and the quantum states realized in them.