论文标题

有限的$ M $缩放分析Berezinskii-Kosterlitz-六态时钟模型的无用相变和纠缠频谱

Finite-$m$ scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model

论文作者

Ueda, Hiroshi, Okunishi, Kouichi, Harada, Kenji, Krčmár, Roman, Gendiar, Andrej, Yunoki, Seiji, Nishino, Tomotoshi

论文摘要

我们使用Corner-Trans-Trans-Trans-Transfer矩阵恢复归一化组(CTMRG)研究了Berezinskii-Kosterlitz-berezinskii-kosterlitz-thouless thouless thouless thouless thouless Truntition。在CTMRG的固定点上,相对于截止尺寸$ m $的有效相关长度,磁化和纠缠熵的缩放分析提供了与最近的数值研究一致的过渡温度。我们还揭示了六态时钟模型的关键中间阶段中角传递矩阵的固定点光谱的特征是缩放维度与$ c = 1 $ c = 1 $边界保形场理论一致,与有效的$ z_6 $ dual dual Sinine-gordon模型相关。

We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with the corner-transfer matrix renormalization group (CTMRG). Scaling analyses for effective correlation length, magnetization, and entanglement entropy with respect to the cutoff dimension $m$ at the fixed point of CTMRG provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the fixed point spectrum of the corner transfer matrix in the critical intermediate phase of the six-state clock model is characterized by the scaling dimension consistent with the $c=1$ boundary conformal field theory associated with the effective $Z_6$ dual sine-Gordon model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源