论文标题
自我辐射硅中电子和离子动力学的多尺度模拟
Multi-scale simulations of electron and ion dynamics in self-irradiated silicon
论文作者
论文摘要
能量离子与目标材料的电子和离子系统的相互作用是一个有趣但具有挑战性的多尺度问题,并且在重重,最初充满电的离子影响后对早期阶段的理解尤为差。同时,在这些早期阶段的能量沉积决定了后来的损害级联反应。我们通过将电子动力学的实时时间依赖性密度功能理论与损伤级联的分子动力学模拟相结合,来解决多尺度特征。我们的第一原理模拟证明核心电子会影响电子停止,并对弹丸的电荷产生意外影响。我们表明,轻弹药不存在这种效果,但主导着沉重的弹丸的停止物理。通过使用我们的第一原理结果,通过在分子动力学模拟中参数化无弹性损失摩擦项,我们还显示了电子停止物理学对辐射破坏级联反应的定性影响。
The interaction of energetic ions with the electronic and ionic system of target materials is an interesting but challenging multi-scale problem and understanding of the early stages after impact of heavy, initially charged ions is particularly poor. At the same time, energy deposition during these early stages determines later formation of damage cascades. We address the multi-scale character by combining real-time time-dependent density functional theory for electron dynamics with molecular dynamics simulations of damage cascades. Our first-principles simulations prove that core electrons affect electronic stopping and have an unexpected influence on the charge state of the projectile. We show that this effect is absent for light projectiles, but dominates the stopping physics for heavy projectiles. By parameterizing an inelastic energy loss friction term in the molecular dynamics simulations using our first-principles results, we also show a qualitative influence of electronic stopping physics on radiation-damage cascades.