论文标题

解释云计算机视觉疼痛点:堆栈溢出的采矿研究

Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow

论文作者

Cummaudo, Alex, Vasa, Rajesh, Barnett, Scott, Grundy, John, Abdelrazek, Mohamed

论文摘要

智能服务变得越来越普遍;应用程序开发人员希望利用计算机愿景等领域的最新进展,以向用户提供新的服务和产品,大型技术公司通过Restful API启用了这一点。尽管这样的API有望易于整合按需机器智能,但它们当前的设计,文档和开发人员界面却隐藏了许多为它们提供动力的基础机器学习技术。这样的API看起来和感觉像常规的API,但抽象的数据驱动的概率行为 - 开发人员以与其他传统云服务(例如云存储)相同的方式处理这些API的含义。这项研究的目的是确定开发人员在实施依赖这些智能服务最成熟的系统时,特别是提供计算机视觉的系统时所面临的各种痛苦点。我们使用堆栈溢出来挖掘开发人员在使用计算机视觉服务时似乎面临的挫败感,对他们的问题进行分类,以针对两个最近的分类分类法(与文档有关和一般性问题)进行分类。我们发现,与移动开发等成熟领域不同,开发人员提出的问题类型存在对比。这些表明对增强此类系统能力的基础技术有浅薄的理解。我们通过学习分类法的角度讨论了这些发现的一些含义,以暗示软件工程社区如何改善这些服务并评论开发人员使用它们的性质。

Intelligent services are becoming increasingly more pervasive; application developers want to leverage the latest advances in areas such as computer vision to provide new services and products to users, and large technology firms enable this via RESTful APIs. While such APIs promise an easy-to-integrate on-demand machine intelligence, their current design, documentation and developer interface hides much of the underlying machine learning techniques that power them. Such APIs look and feel like conventional APIs but abstract away data-driven probabilistic behaviour - the implications of a developer treating these APIs in the same way as other, traditional cloud services, such as cloud storage, is of concern. The objective of this study is to determine the various pain-points developers face when implementing systems that rely on the most mature of these intelligent services, specifically those that provide computer vision. We use Stack Overflow to mine indications of the frustrations that developers appear to face when using computer vision services, classifying their questions against two recent classification taxonomies (documentation-related and general questions). We find that, unlike mature fields like mobile development, there is a contrast in the types of questions asked by developers. These indicate a shallow understanding of the underlying technology that empower such systems. We discuss several implications of these findings via the lens of learning taxonomies to suggest how the software engineering community can improve these services and comment on the nature by which developers use them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源