论文标题

无监督的程序综合图像通过采样而无需替换

Unsupervised Program Synthesis for Images By Sampling Without Replacement

论文作者

Zhou, Chenghui, Li, Chun-Liang, Poczos, Barnabas

论文摘要

程序合成已成为成功解析任务的成功方法。大多数先前的作品都依赖于两步方案,涉及通过合成程序进行seq2Seq模型进行预处理的预处理,然后加强学习(RL),用于使用真实的参考图像进行微调。完全无监督的方法有望直接在目标图像上训练该模型,而无需策划预处理数据集。但是,他们与搜索空间中有意义的程序的固有稀疏性斗争。在本文中,我们介绍了第一种无监督的算法,能够将构造固体几何形状(CSG)图像解析为无上下文的语法(CFG),而无需通过非差异性渲染器进行预处理。为了解决\ emph {non-markovian}稀疏奖励问题,我们结合了三种关键成分 - (i)语法编码的树LSTM确保程序有效性(ii)熵正则化和(iii)采样,而无需从CFG义话树中替换。从经验上讲,我们的算法在大型搜索空间中恢复有意义的程序(最高$ 3.8 \ times 10^{28} $)。此外,即使我们的方法完全不受监督,它也比合成2D CSG数据集的监督方法更好地概括了。在2D计算机辅助设计(CAD)数据集上,我们的方法大大优于被监督的预处理模型,并且与精制模型具有竞争力。

Program synthesis has emerged as a successful approach to the image parsing task. Most prior works rely on a two-step scheme involving supervised pretraining of a Seq2Seq model with synthetic programs followed by reinforcement learning (RL) for fine-tuning with real reference images. Fully unsupervised approaches promise to train the model directly on the target images without requiring curated pretraining datasets. However, they struggle with the inherent sparsity of meaningful programs in the search space. In this paper, we present the first unsupervised algorithm capable of parsing constructive solid geometry (CSG) images into context-free grammar (CFG) without pretraining via non-differentiable renderer. To tackle the \emph{non-Markovian} sparse reward problem, we combine three key ingredients -- (i) a grammar-encoded tree LSTM ensuring program validity (ii) entropy regularization and (iii) sampling without replacement from the CFG syntax tree. Empirically, our algorithm recovers meaningful programs in large search spaces (up to $3.8 \times 10^{28}$). Further, even though our approach is fully unsupervised, it generalizes better than supervised methods on the synthetic 2D CSG dataset. On the 2D computer aided design (CAD) dataset, our approach significantly outperforms the supervised pretrained model and is competitive to the refined model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源