论文标题
一维拓扑带绝缘子中的多政治性
Multicriticality in a one-dimensional topological band insulator
论文作者
论文摘要
量子相变(QPT)理论中的一个中心宗旨是,热力学极限中地下能量的非分析性意味着QPT。在这里,我们报告了一项挑战这一主张的发现。作为一个案例研究,我们使用带自旋轨道耦合电子的一维带绝缘子的相图,从而支撑着相交临界表面相交的琐碎和拓扑间隙相。这些交叉点定义了基础状态能量在其中变为非分析的多政治线,并同时与带隙的闭合,但没有发生相变。
A central tenet in the theory of quantum phase transitions (QPTs) is that a nonanalyticity in the ground-state energy in the thermodynamic limit implies a QPT. Here we report on a finding that challenges this assertion. As a case study we take a phase diagram of a one-dimensional band insulator with spin-orbit coupled electrons, supporting trivial and topological gapped phases separated by intersecting critical surfaces. The intersections define multicritical lines across which the ground-state energy becomes nonanalytical, concurrent with a closing of the band gap, but with no phase transition taking place.