论文标题
Hochschild共同学,有限条件和概括$ d $ -Koszul代数
Hochschild cohomology, finiteness conditions and a generalisation of $d$-Koszul algebras
论文作者
论文摘要
给定有限维代数$λ$和$ a \ geqslant 1 $,我们构建了一个新的代数$ \tildeλ_a$,称为拉伸代数,并将其与$λ$和$ \ \ \ \ \ \ \ \ \tildeλ_a$相关联。我们研究了Hochschild的共同体学和有限性条件(FG),并使用分层的理想表明$λ$在且仅当$ \tildeλ_a$ akh amphs(fg)时才(fg)。我们还考虑投射决议,并在$ D $ -Koszul代数为$ d \ geqslant 2 $的情况下应用我们的结果。
Given a finite-dimensional algebra $Λ$ and $A \geqslant 1$, we construct a new algebra $\tildeΛ_A$, called the stretched algebra, and relate the homological properties of $Λ$ and $\tildeΛ_A$. We investigate Hochschild cohomology and the finiteness condition (Fg), and use stratifying ideals to show that $Λ$ has (Fg) if and only if $\tildeΛ_A$ has (Fg). We also consider projective resolutions and apply our results in the case where $Λ$ is a $d$-Koszul algebra for some $d \geqslant 2$.