论文标题
FakeLocator:基于GAN的面部操作的强大定位
FakeLocator: Robust Localization of GAN-Based Face Manipulations
论文作者
论文摘要
全面的综合和部分面对面的操纵是由于生成的对抗网络(GAN)及其变体引起了广泛的公众关注。在多媒体法医区域中,检测并最终定位图像伪造已成为必须的任务。在这项工作中,我们研究了现有的基于GAN的面部操纵方法的架构,并观察到上面采样方法的不完美可以作为GAN合成的假伪造图像检测和伪造定位的重要资产。基于这个基本的观察,我们提出了一种新的方法,称为FakeLocator,以完全分辨出受操纵的面部图像以完全分辨率获得较高的定位精度。据我们所知,这是使用灰度伪造地图解决基于GAN的假定位问题的首次尝试,该图可以保留更多的假地区信息。为了改善跨多种面部属性的FakeLocator的普遍性,我们引入了一种注意机制来指导模型的训练。为了改善跨不同深泡方法的Fakelocator的普遍性,我们提出了部分数据增强和训练图像上的单个样本聚类。关于流行的Face-Forensics ++,DFFD数据集和七个不同最先进的基于GAN的面部生成方法的实验结果显示了我们方法的有效性。与基准相比,我们的方法在各种指标上的性能更好。此外,提出的方法对各种现实的面部图像降解(例如JPEG压缩,低分辨率,噪声和模糊)具有鲁棒性。
Full face synthesis and partial face manipulation by virtue of the generative adversarial networks (GANs) and its variants have raised wide public concerns. In the multi-media forensics area, detecting and ultimately locating the image forgery has become an imperative task. In this work, we investigate the architecture of existing GAN-based face manipulation methods and observe that the imperfection of upsampling methods therewithin could be served as an important asset for GAN-synthesized fake image detection and forgery localization. Based on this basic observation, we have proposed a novel approach, termed FakeLocator, to obtain high localization accuracy, at full resolution, on manipulated facial images. To the best of our knowledge, this is the very first attempt to solve the GAN-based fake localization problem with a gray-scale fakeness map that preserves more information of fake regions. To improve the universality of FakeLocator across multifarious facial attributes, we introduce an attention mechanism to guide the training of the model. To improve the universality of FakeLocator across different DeepFake methods, we propose partial data augmentation and single sample clustering on the training images. Experimental results on popular FaceForensics++, DFFD datasets and seven different state-of-the-art GAN-based face generation methods have shown the effectiveness of our method. Compared with the baselines, our method performs better on various metrics. Moreover, the proposed method is robust against various real-world facial image degradations such as JPEG compression, low-resolution, noise, and blur.