论文标题
腹部多器官分割,级联卷积和对抗深网络
Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks
论文作者
论文摘要
目的:腹部解剖学分割对于从计算机辅助诊断到图像引导手术的许多应用至关重要。在这种情况下,我们使用深度学习从腹部CT和MR图像中解决了完全自动化的多器官分割。方法:所提出的模型扩展了标准条件生成对抗网络。除了强制执行模型创建逼真的器官描述的鉴别器外,它还嵌入了级联的部分预先训练的卷积编码器作为发电机。来自大量非医学图像的编码器微调减轻了数据稀缺性限制。该网络是端对端训练的,可以通过自动限制从同时进行多级分割细分中受益。结果:我们的管道用于健康的肝脏,肾脏和脾脏分割,通过优于最先进的编码器码头方案,提供了有希望的结果。紧随其后的是健康腹部器官分割(混乱)挑战与IEEE国际生物医学成像研讨会组织2019年,它为我们提供了三种竞争类别的第一个排名:肝脏CT,肝脏MR和Multi-Organ MR MR分割。结论:结合级联的卷积和对抗网络,可以增强深度学习管道自动描绘多个腹部器官的能力,并具有良好的概括能力。意义:提供的全面评估表明,可以为帮助临床医生提供更好的指导,以帮助临床医生进行腹部图像解释和临床决策。
Objective : Abdominal anatomy segmentation is crucial for numerous applications from computer-assisted diagnosis to image-guided surgery. In this context, we address fully-automated multi-organ segmentation from abdominal CT and MR images using deep learning. Methods: The proposed model extends standard conditional generative adversarial networks. Additionally to the discriminator which enforces the model to create realistic organ delineations, it embeds cascaded partially pre-trained convolutional encoder-decoders as generator. Encoder fine-tuning from a large amount of non-medical images alleviates data scarcity limitations. The network is trained end-to-end to benefit from simultaneous multi-level segmentation refinements using auto-context. Results : Employed for healthy liver, kidneys and spleen segmentation, our pipeline provides promising results by outperforming state-of-the-art encoder-decoder schemes. Followed for the Combined Healthy Abdominal Organ Segmentation (CHAOS) challenge organized in conjunction with the IEEE International Symposium on Biomedical Imaging 2019, it gave us the first rank for three competition categories: liver CT, liver MR and multi-organ MR segmentation. Conclusion : Combining cascaded convolutional and adversarial networks strengthens the ability of deep learning pipelines to automatically delineate multiple abdominal organs, with good generalization capability. Significance : The comprehensive evaluation provided suggests that better guidance could be achieved to help clinicians in abdominal image interpretation and clinical decision making.