论文标题

Exp $(β\ sqrt {1-z^2})$ bernel的异叠错误(β\ sqrt

Aliasing error of the exp$(β\sqrt{1-z^2})$ kernel in the nonuniform fast Fourier transform

论文作者

Barnett, A. H.

论文摘要

非均匀快速傅立叶变换(NUFFT)最受欢迎的算法使用核$ ϕ $扩张在给定的非均匀点和均匀的上采样网格之间扩展(或插入式),并在频率空间中结合FFT和对角线缩放(反向尺度)。最近的Finufft库的高性能部分是由于它使用了新的“半圆的指数​​”内核$ ϕ(z)= e^{β\ sqrt {1-z^2}} $,对于$ z \ in [-1,1] $,零,零,否则,其fornier transform $ \ hat frons $ \ hait frons $ \ hat frons $ \ hat frons $ \ hait hat frons $均在ensanning neshnaty neflenty neflenty neflenty neflenty在家中。我们通过证明一个混蛋误差估计值将此内核放置在严格的基础上,该误差估算范围界定了1型NUFFT的误差,即确切的算术。在以上采样的网格点测得的内核宽度中,误差显示出随着通俗的kaiser-bessel-bessel内核而任意接近的指数速率降低的。这就需要使用最陡的下降,其他轮廓积分上的其他经典估计以及分阶段的SINC总和来控制$ \ hat ϕ $的尾巴上的有条件的总和。我们还在上述内核,kaiser-bessel和praly spheroidal波函数之间绘制新的连接,这些连接似乎具有最佳的指数收敛速率。

The most popular algorithm for the nonuniform fast Fourier transform (NUFFT) uses the dilation of a kernel $ϕ$ to spread (or interpolate) between given nonuniform points and a uniform upsampled grid, combined with an FFT and diagonal scaling (deconvolution) in frequency space. The high performance of the recent FINUFFT library is in part due to its use of a new "exponential of semicircle" kernel $ϕ(z)=e^{β\sqrt{1-z^2}}$, for $z\in[-1,1]$, zero otherwise, whose Fourier transform $\hatϕ$ is unknown analytically. We place this kernel on a rigorous footing by proving an aliasing error estimate which bounds the error of the one-dimensional NUFFT of types 1 and 2 in exact arithmetic. Asymptotically in the kernel width measured in upsampled grid points, the error is shown to decrease with an exponential rate arbitrarily close to that of the popular Kaiser--Bessel kernel. This requires controlling a conditionally-convergent sum over the tails of $\hatϕ$, using steepest descent, other classical estimates on contour integrals, and a phased sinc sum. We also draw new connections between the above kernel, Kaiser--Bessel, and prolate spheroidal wavefunctions of order zero, which all appear to share an optimal exponential convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源