论文标题

瞄准稳定治疗效果估计器的混杂选择策略

Confounder selection strategies targeting stable treatment effect estimators

论文作者

Loh, Wen Wei, Vansteelandt, Stijn

论文摘要

在观察性研究中推断治疗对结果的因果作用需要调整观察到的基线混杂因素以避免偏见。但是,对所有观察到的基线协变量进行调整时,只有一个子集是感兴趣效应的混杂因素时,就会产生潜在的治疗效果效率低下且不稳定的估计量。此外,由于模型错误指定,它增加了有限样本偏差和偏差的风险。由于这些既定原因,混杂因素(或协变量)的选择通常用于确定可用协变量的子集,足以混淆调整。在本文中,我们提出了一种混杂的选择策略,该策略侧重于稳定的治疗效果估计。特别是,当倾向得分模型已经包括足以适应混淆的协变量时,添加与仅与治疗或结果相关的协变量,但并非两者都不应系统地改变效应估计器。因此,该提案首先需要优先考虑协变量,以包含在倾向得分模型中,然后使用一种变化方法来选择最小的调整集,从而得出稳定的效果估计值。提案正确选择混杂因素并确保在数据驱动的协变量选择后确保对治疗效果的有效推断的能力进行了经验评估,并使用模拟研究与现有方法进行了比较。我们使用通常用于因果推理的三个不同公开可用数据集演示了该过程。

Inferring the causal effect of a treatment on an outcome in an observational study requires adjusting for observed baseline confounders to avoid bias. However, adjusting for all observed baseline covariates, when only a subset are confounders of the effect of interest, is known to yield potentially inefficient and unstable estimators of the treatment effect. Furthermore, it raises the risk of finite-sample bias and bias due to model misspecification. For these stated reasons, confounder (or covariate) selection is commonly used to determine a subset of the available covariates that is sufficient for confounding adjustment. In this article, we propose a confounder selection strategy that focuses on stable estimation of the treatment effect. In particular, when the propensity score model already includes covariates that are sufficient to adjust for confounding, then the addition of covariates that are associated with either treatment or outcome alone, but not both, should not systematically change the effect estimator. The proposal, therefore, entails first prioritizing covariates for inclusion in the propensity score model, then using a change-in-estimate approach to select the smallest adjustment set that yields a stable effect estimate. The ability of the proposal to correctly select confounders, and to ensure valid inference of the treatment effect following data-driven covariate selection, is assessed empirically and compared with existing methods using simulation studies. We demonstrate the procedure using three different publicly available datasets commonly used for causal inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源