论文标题

多组分可压缩流体中的质量运输:一类型型模型的强大解决方案类别的本地和全球适应性

Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models

论文作者

Bothe, Dieter, Druet, Pierre-Etienne

论文摘要

我们考虑了一个偏微分方程的系统,该系统描述了多组分等热可压缩流体中的质量传输。扩散通量遵守幻想或麦克斯韦 - 史密斯封闭方法。机械力导致一个单一的对流混合速度,即barycentric速度,它遵守Navier-Stokes方程。热力学压力由Gibbs-Duhem方程定义。化学电位和压力源自热力学电位,即Helmholtz自由能,其大量密度可以作为成分质量密度的一般凸功能。所得的PDE是混合的抛物线型 - 蜂骨类型。我们证明了关于模型在强溶液类别中的适当性的两个理论结果:1。解决方案始终存在,对于短期和2时。如果初始数据足够接近于平衡溶液,则拟合良好的性能在任意大且有限的时间间隔上有效。这两种结果都依赖于对混合类型系统有效的收缩原则,其行为像可压缩的Navier-Stokes方程。操作员的线性抛物线部分具有相对于状态空间中的某些封闭球的自我地图属性,而仅在低阶规范中具有承包商。在本文中,我们通过精确的确切规律空间中的先验估计来实施这些想法。

We consider a system of partial differential equations describing mass transport in a multicomponent isothermal compressible fluid. The diffusion fluxes obey the Fick-Onsager or Maxwell-Stefan closure approach. Mechanical forces result into one single convective mixture velocity, the barycentric one, which obeys the Navier-Stokes equations. The thermodynamic pressure is defined by the Gibbs-Duhem equation. Chemical potentials and pressure are derived from a thermodynamic potential, the Helmholtz free energy, with a bulk density allowed to be a general convex function of the mass densities of the constituents. The resulting PDEs are of mixed parabolic--hyperbolic type. We prove two theoretical results concerning the well-posedness of the model in classes of strong solutions: 1. The solution always exists and is unique for short--times and 2. If the initial data are sufficiently near to an equilibrium solution, the well-posedness is valid on arbitrary large, but finite time intervals. Both results rely on a contraction principle valid for systems of mixed type that behave like the compressible Navier-Stokes equations. The linearised parabolic part of the operator possesses the self map property with respect to some closed ball in the state space, while being contractive in a lower order norm only. In this paper, we implement these ideas by means of precise a priori estimates in spaces of exact regularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源